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Tremendous progress has recently been described in the develop-
ment of highly active palladium-based catalysts for cross-coupling
reactions of aryl halides and sulfonates.1 For example, a broad range
of couplings of previously “unreactive” aryl chlorides can now be
achieved through the use of any of an array of ligands (e.g.,
aryldialkylphosphines, trialkylphosphines, and carbenes).2

Compared with cross-coupling processes, advances in the
development of more reactive catalysts forHeck arylations3 have
been limitedsto date, only Pd/P(t-Bu)3 has been shown to serve
as an efficient catalyst for couplings of a variety of aryl chlorides
and olefins under relatively mild conditions.4,5 This dichotomy in
progress between cross-couplings and Heck arylations is intriguing
in light of the traditional view that the poor reactivity of aryl
chlorides in coupling processes is due to their reluctance to
oxidatively add to Pd(0) complexes.6 Were this the only significant
barrier to success, then palladium/ligand combinations that have
proved effective for cross-couplings of aryl chlorides should also
be effective for Heck reactions of these compounds.

Equations 1 and 2 provide an illustration of this inability to sim-
ply extrapolate from success in cross-couplings to success in Heck
arylations. Thus, whereas in our 1998 study of the Suzuki reaction
we observed that PCy3 and P(t-Bu)3 furnish comparably active
catalysts for the cross-coupling of an aryl chloride (eq 1),7 in our
1999 investigation of the Heck reaction, we found Pd/PCy3 to be
ineffective under conditions in which Pd/P(t-Bu)3 is active (eq 2).4b,8

In the standard catalytic cycle for Heck arylations, the role of
the Brønsted base is to mediate reductive elimination of HX from
LnPdHX to regenerate a Pd(0) adduct (Figure 1).3 In our earlier
studies of Pd/P(t-Bu)3-catalyzed Heck reactions, we determined that
the choice of base has a large impact on the efficiency of the process
(e.g., eq 3).4a We have now monitored these arylations by31P NMR
spectroscopy, and we have discovered that the resting state of the
catalytic reaction depends on the Brønsted base: in the presence
of Cs2CO3, L2PdHCl is the only detectable palladium-phosphine
complex, whereas in the case of Cy2NMe only PdL2 is observed
(eq 4).9 To the best of our knowledge, the arylation mediated by
Cs2CO3 represents the first time that a palladium hydride has been
identified during the course of a catalyzed Heck reaction.10

The31P NMR data in eq 4 indicate that Cs2CO3 is not especially
effective at regenerating Pd(0) from L2PdHCl, correlating with the
lower coupling activity of Pd/P(t-Bu)3 in the presence of this
particular Brønsted base. Interestingly, discussions of the Heck
reaction rarely focus on the Pd(0)-regeneration step of the catalytic
cycle; indeed, we are not aware of any mechanistic work that has
specifically explored reductive elimination of H-X within the
context of reactivity studies of Heck arylation catalysts.11,12

Stimulated by the above observations, we initiated an investiga-
tion of base-mediated reductive elimination of HCl from L2PdHCl
adducts (L) P(t-Bu)3 and PCy3). The results of this study surprised
us: for the P(t-Bu)3-derived complex, reaction with Cy2NMe leads
to the anticipated elimination to cleanly generate PdL2 (∆Gq ) 22
kcal/mol at 20°C), whereas for the analogous PCy3 adduct the
equilibrium favors L2PdHCl (eq 5)!13

Although we had expected that there might be akinetic impe-
diment to base-mediated reductive elimination from L2PdHCl com-
plexes (e.g., due to the low solubility of a particular Brønsted base),
we had not anticipated that, for some adducts, Cy2NMe-induced
elimination would not be favoredthermodynamically. Of course,
one potential explanation for the divergent reactivity illustrated in
eq 5 is the different steric demand of P(t-Bu)3 and PCy3.14 To obtain
a clearer picture of this possibility, we crystallographically char-
acterized the two L2PdHCl complexes (Figure 2).15 In the case of
the PCy3 adduct, the P-Pd-P geometry is linear (180°). In contrast,
for the P(t-Bu)3 complex, the P-Pd-P angle is 161°; specifically,
the P(t-Bu)3 ligands are bent away from Cl, at the cost of increased
interaction between the two phosphines and with the hydride. These
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unfavorable steric effects are relieved upon reductive elimination
to generate Pd(P(t-Bu)3)2, thereby providing a driving force for this
process.

On the basis of these data, we postulate that the comparatively
low activity of Pd/PCy3 as a catalyst for Heck reactions of aryl
chlorides (e.g., eq 2) may be attributable in part to the relative
reluctance of (PCy3)2PdHCl to undergo reductive elimination in
the presence of Cy2NMe, the critical Pd(0)-regenerating step of
the catalytic cycle (Figure 1). For (P(t-Bu)3)2PdHCl, on the other
hand, loss of HCl is favored and facile.

We have examined the kinetics of the Cy2NMe-mediated
reductive elimination of HCl from L2PdHCl (L ) P(t-Bu)3; eq 6).
The rate of the reaction is first order in L2PdHCl, zero order in
Cy2NMe, and inhibited by the addition of P(t-Bu)3.16 These data
are consistent with a mechanism for reductive elimination that
involves an initial dissociation of L from L2PdHCl (eq 6).

In summary, we have described a series of studies that provide
insight into the Heck arylation process. Specifically, we have detect-
ed, for the first time, the postulated palladium-hydride intermediate
(L2PdHX) in the catalytic cycle. We have determined that the base-
mediated Pd(0)-regeneration step (L2PdHX f PdL2) of the cycle
can be kinetically slow and thermodynamically unfavorable. This
reductive elimination process is remarkably sensitive to the structure
of L (PCy3 vs P(t-Bu)3), which we believe, on the basis of crys-
tallographic studies, may be a consequence of steric effects. Finally,
we have correlated slow rates of Heck arylation with reluctant
reductive elimination of L2PdHX, furnishing a possible rationaliza-

tion for our observed Brønsted-base (Cs2CO3 vs Cy2NMe) and
ligand (PCy3 vs P(t-Bu)3) effects. Additional mechanistic studies
of palladium-catalyzed coupling processes, as well as the develop-
ment of Heck-type reactions of alkyl electrophiles, are underway.
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Figure 1. Generalized catalytic cycle for Heck arylations.

Figure 2. Space-filling (van der Waals radii) models based on the X-ray
crystal structures of L2PdHCl (left: L ) PCy3; right: L ) P(t-Bu)3).
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